Mathematical Modeling of Oxygen Transport , Cell Killing and Cell Decision Making in Photodynamic Therapy of Cancer

نویسندگان

  • Ioannis Gkigkitzis
  • Xin-Hua Hu
چکیده

In this study we present a model of in vitro cell killing through type II Photodynamic Therapy (PDT) for simulation of the molecular interactions leading to cell death in time domain in the presence of oxygen transport within a spherical cell. By coupling the molecular kinetics to cell killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain the cell survival ratio as a function of light fluence or initial photosensitizer concentration with different photon density or irradiance of incident light and other parameters of oxygen transport. A systems biology model is developed to account for the detailed molecular pathways induced by PDT treatment leading to cell killing. We derive a mathematical model of cell decision making through a binary cell fate decision scheme on cell death or survival, during and after PDT treatment, and we employ a rate distortion theory as the logical design for this decision making proccess to understand the biochemical processing of information by a cell. Rate distortion theory is also used to design a time dependent Blahut-Arimoto algorithm of three variables where the input is a stimulus vector composed of the time dependent concentrations of three PDT induced signaling molecules and the output reflects a cell fate decision. The concentrations of molecules involved in the biochemical processes are determined by a group of rate equations which produce the probability of cell survival or death as the output of cell decision. The modeling of the cell decision strategy allows quantitative assessment of the cell survival probability, as a function of multiple parameters and coefficients used in the model, which can be modified to account for heterogeneous cell response to PDT or other killing or therapeutic agents. The numerical results show that the present model of type II PDT yields a powerful tool to quantify various processes underlying PDT at the molecular and cellular levels and to interpret experimental results of in vitro cell studies. Finally, following an alternative approach, the cell survival probability is modeled as a predator prey equation where predators are cell death signaling molecules and prey is the cell survival. The two models can be compared to each other as well as directly to the experimental results of measured molecular concentrations and cell survival ratios for optimization of models, to gain insights on in vitro cell studies of PDT. Mathematical Modeling of Oxygen Transport, Cell Killing and Cell Decision Making in Photodynamic Therapy of Cancer A Thesis/Dissertation Presented To the Faculty of the Department of Physics East Carolina University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه اثر دو منبع نور لیزری متفاوت بر بازده درمان فتودینامیکی سرطان پستان در شرایط برون تنی

Background and Objective: Photodynamic therapy is a new therapeutic modality for the treatment of cancer. Photodynamic therapy uses an inactive drug and a light source to activate the drug to produce reactive oxygen species that destroy the cancer cells. In the present study, the effect of two different laser light sources on the efficiency of photodynamic therapy was evaluated using a breast c...

متن کامل

Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...

متن کامل

بررسی بیان ژن کاسپاز 9 و القای آپوپتوز پس از فوتودینامیک تراپی با روی فتالوسیانین در رده‌ی سلولیSW872 سرطان پوست

Background and Objective: The treatment of cancer comes as a great challenge worldwide. Thus the development of effective therapies with minimal side effects is important. Photodynamic therapy is a non-invasive and new therapeutic approach for the treatment of cancer. Therefore, in this study, we evaluated the photodynamic effects of a light-sensitive compound, Zinc-phthalocyanine (ZnPc), on ce...

متن کامل

Evaluation of the Primary Response of Basal Cell Carcinoma to Aminolevulinic Acid Photodynamic Therapy

Background: Basal Cell Carcinoma (BCC) is the most common type of skin cancer in human beings. Photodynamic therapy (PDT) is a novel therapeutic method which may be regarded as a non-invasive useful alternative for traditional treatments of BCC. This study was designed with the aim of evaluating the primary response of BCC to PDT.Methods: This clinical trial was perform...

متن کامل

Cell damaging by irradiating non-thermal plasma to the water: Mathematical modeling of chemical processes

Recently non-thermal plasma (NTP) is applied for many therapeutic applications. By NTP irradiating to the tissues or cell-lines, the water molecules (H2O) would be also activated leading to generate hydrogen peroxide (H2O2). By irradiating plasma to bio-solution, its main output including vacuum UV to UV causes the photolysis of H2O leading to generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012